当前位置:首页 > 实用范文

北京卷2022高考数学试题及答案(多篇)

时间:2024-11-21 07:35:11
北京卷2022高考数学试题及答案(多篇)

【摘要】北京卷2022高考数学试题及答案(多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。

高考数学答题注意什么 篇一

针对基础较差、以二本为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。

针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后)www.(两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。

针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。

高考数学各题型解题方法 篇二

1、解三角形

不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。

所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。

2、圆锥曲线

高考对于圆锥曲线的考查也是有套路可循的。

一般套路是:前半部分是对基本性质的考查,后半部分考查与直线相交。

当你对高考题目积累量足够多的时候,会发现,后半部分的步骤基本是一致的。

即:设直线,然后将直线方程代入圆锥曲线,得到一个关于x的二次方程,分析判别式、韦达定理,利用韦达定理的结果求解待求量。

3、函数与导数

这一类题型以求导然后分析函数为主。导数这部分的步骤是比较固定的。

导数与函数的题型,大体分为三类:

1、关于单调性,最值,极值的考查。

2、证明不等式。

3、函数中含有字母,分类讨论字母的取值范围。

数列的通项、求和问题答题模板 篇三

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

解析几何中的探索性问题怎么答 篇四

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

数学答题技巧 篇五

1、妙用数学思想

数学客观题有60分,它的特点是只要答案,不要过程,有人戏称为不讲理的题,正因为不要写出道理,就要讲究解题策略,而不必每题都当解答题去解。考生可以动用三大法宝:排除法、特殊值法、数形结合法。

如已知|a|1,|b|1,|c|1,则ab+bc+ca与-1的大小关系是______。

用特殊值法,取a=b=c=0,立得ab+bc+ca-1。若把它当成解答题来解,有些学生可能不会做,或者即使会做也要浪费好多时间。

2、力求最简解法

有的问题有简捷的解法,但有些学生往往拿到题目后不认真思考,随便想到一种方法就解,结果要么是繁得做不下去,要么解题过程中出现运算错误,即使勉强解出结果,却用了大量时间。

因此,考生拿到题目不要急于落笔,先找出比较简单的方法再解题,既能准确算对,又能节省时间,否则会陷于欲进不能、欲罢不忍的尴尬状态。由繁变简,关键在于不墨守成规。改变一下思维方式,可以使问题的解答变得异常简单。

高考数学答题技巧 篇六

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

你也可以在搜索更多本站小编为你整理的其他北京卷2022高考数学试题及答案(多篇)范文。

《北京卷2022高考数学试题及答案(多篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式